μ Module Power Products

Simplify Power

μ Module ${ }^{\circledR}$ Power Products Simplify Implementation, Verification and Manufacturing of
Power Circuits by Integrating Power Functions in a Compact Package.

15 Product Families 100μ Module Power Products 30 Package Options

Digital Power System Management
READ status from and WRITE settings to these μ Module regulators via a serial bus. (Page 21)

High Power,

Precision Current Sharing
Parallel several μ Module regulators to deliver high power to a load with uniform distribution of load current. (Pages 18 \& 19)

1.82mm Ultrathin Packages

Place this family of μ Module regulators on the backside of the PCB or next to an FPGA or ASIC sharing the same heat sink or cold plate (Page 25)

Ultralow Noise

This family of μ Module regulators have onboard filters and are EN55022 class B certified. (Page 11)

Tune-a- μ Module

 RegulatorGain access to internal compensation of a μ Module regulator and tune loop response to obtain best output voltage accuracy, fast transient response and minimum output capacitance for powering FPGAs, ASICs and microprocessors. (Page 22)

Buck-Boost

New product additions to this μ Module regulator family have integrated magnetics and operate from higher input voltage. (Page 11)

Multiple Output

$5,4,3$, or 2 output μ Module regulators allow current sharing of outputs to increase load current and ON/OFF or sequencing of each output. (Page 10)

Isolated

With integrated transformer this μ Module regulator family provides electrical isolation between input and output. (Page 11)

Selector Guide														
Feature														
$\begin{aligned} & \text { 들 } \\ & \text { 들 } \\ & \text { 븡 } \end{aligned}$		LOW Noise Low Outpu Voltage Ripple				Sync Л几几 Synchronizable		Multiple Output		Precision Remote Sense				Pin Compatible
		Page 25	Page 7	-	-	-	-	Page 11	Page 12	-	-	-	Page 24	-
	Step-Up \& Down Page 11	Page 25	Page 7	-	-	Page 11	Page 11	-	Page 12	-	-	-	Page 24	Page 6
	Battery Charger Page 11	-	-	-	Page 11	-	Page 11	-	-	-	-	-	-	-
		Page 11	Page 7	Page 11	Pages 8 \& 9	Pages 8 \& 9	Pages 8 \& 9	Page 11	Page 12	Page 13	$\begin{aligned} & \text { Pages } \\ & 20 \text { \& } 21 \end{aligned}$	Pages 20 \& 21	Page 24	Page 6
		-	-	-	-	Page 10	-	-	-	-	-	-	-	-

Find it Fast
Example:Multiple Output, Step-Down μ Module Regulators = Page 11

							$\|l\| l\|l\| l\|l\| l \mid$						

Function	Device 1	Device 2	Device 3	Details
Step-Down	LTM8022 (36V $\mathrm{IN}^{1}, 1 \mathrm{~A}$)	LTM8023 (36V $\left.{ }_{\text {IN }}, 2 \mathrm{~A}\right)$		See Page 8
	LTM4602 ($\left.20 \mathrm{~V}_{\text {IN }}, 6 \mathrm{~A}\right)$	LTM4600 ($\left.20 \mathrm{~V}_{\mathbb{1}}, 10 \mathrm{~A}\right)$		See Pages 8 \& 9
	LTM4603 (201 $\left.{ }_{\text {IN }}, 6 \mathrm{~A}\right)$	LTM4601 ($\left.20 \mathrm{~V}_{\mathbb{1}}, 12 \mathrm{~A}\right)$		See Pages 8 \& 9
	LTM4627 ($\left.20 \mathrm{~V}_{\mathbb{1}}, 15 \mathrm{~A}\right)$	LTM4637 ($20 \mathrm{~V}_{\text {IN }}, 20 \mathrm{~A}$)		See Page 9
	LTM4623 (201 $\left.{ }_{\text {IN }}, 3 \mathrm{~A}\right)$	LTM4625 (201 $\left.{ }_{\mathbb{1}}, 5 \mathrm{~A}\right)$		See Page 8
	LTM8026 (36V $\left.{ }_{\text {IN }}, 5 \mathrm{~F}, \mathrm{CVCC}\right)$	LTM8052 (36V ${ }_{\text {IN }}$, 5A, 2-Quadrant, CVCC)		See Page 8
Dual Step-Down	LTM4628 (5.5V $\left.{ }_{\text {out }}, 2 \times 8 \mathrm{~A}\right)$	LTM4620, LTM4620A (2x13A)	LTM4630, LTM4630A, LTM4630-1 (2×18A)	See Pages 8 \& 9
Low EMI Step-Down	LTM8031 (36V $\left.{ }_{\text {IN }}, 1 \mathrm{~A}\right)$	LTM8032 (36V $\left.{ }_{\text {IN }}, 2 \mathrm{~A}\right)$		See Page 11
	LTM4606 (28V $\left.{ }_{\text {IN }}, 6 \mathrm{~A}\right)$	LTM4612 (361 $\mathrm{IN}, 5 \mathrm{~A})$		See Page 11
Step-Up \& Down	LTM4605 (16V $\left.{ }_{\text {OUT }}, 5 \mathrm{~A}\right)$	LTM4607 ($\left.24 \mathrm{~V}_{\text {OUT }}, 5 \mathrm{~A}\right)$	LTM4609 (34V $\left.\mathrm{V}_{\text {OUT }}, 4 \mathrm{~A}\right)$	See Page 11
	LTM8055 (36V $\left.\mathrm{I}_{\text {IN }}, 36 \mathrm{~V}_{\text {OUT }} 8.5 \mathrm{~A}\right)$	LTM8056 (58V $\left.\mathrm{IN}, 48 \mathrm{~V}_{\text {OUT }}, 5.4 \mathrm{~A}\right)$		See Page 11

Same PCB Layout for Multiple μ Module Regulators (Examples)

Step-Up \& Down

- LTM8055 (36V $\mathrm{V}_{\text {, }}$ 36V git 8.5 A , Step-Up \& Down)
- LTM8056 (58V $\mathrm{V}_{\mathbb{N}}, 48 \mathrm{~V}_{\text {our }}, 5.4 \mathrm{~A}$ Step-Up \& Down)
- LTM4620 (Dual 13A, V our 2 2.5V)
- LTM4620A (Dual 13A, V out $<5.5 \mathrm{~V}$)
- LTM4630 (Dual 18A, $\mathrm{V}_{\text {out }}<1.8 \mathrm{~V}$)
- LTM4630A (Dual 18A, $\mathrm{V}_{\text {out }}<5.3 \mathrm{~V}$)
- LTM4630-1 (Dual 18A, $\mathrm{V}_{\text {our }}<1.8 \mathrm{~V}$,

External Compensation)
High Power Step-Down

- LTM4628 (Dual 8A)

Tiny $6.25 \times 6.25 \mathrm{~mm}$ Package Step-Down

- LTM4623 (20V $\mathbb{N}_{\mathbb{N}} 3 \mathrm{~A}$, Ultrathin)
- LTM4625 (20V $\left.\mathrm{INP}^{5 \mathrm{~A}}\right)$

Isolated and SEPIC Inverting										
Topology	Input Voltage (V)		Output Voltage (V)		Total Output Capability	Clock Sync Range (MHz)	$\begin{gathered} \text { UL60950 } \\ \text { Recognized } \end{gathered}$	Package Dimensions (mm)	Package	Part Number
	Min	Max	Min	Max						
SEPIC or Inverting	2.8	18	-2.5	-15	Up to 0.7A	0.2 to 2.0	No	$6.25 \times 11.25 \times 4.92$	BGA	LTM8045
725V DC Isolated Flyback	3.1	32	-2.5	-12	1.5 W	-	No	$9 \times 11.25 \times 4.92$	BGA	LTM8047
2kV Isolated Flyback	3.1	31	-2.5	-12	1.5 W	-	Yes	$9 \times 11.25 \times 4.92$	BGA	LTM8057
	3.1	31	-1.8	-12	2.5 W	-	Yes	$9 \times 15 \times 4.92$	BGA	LTM8046
Step-Down Based Inverting										
Step-Down	4	36	-1.25	-5	Up to 200mA	-	-	$6.25 \times 6.25 \times 2.32$	LGA	LTM8020
	3	36	-0.8	-5	Up to 500mA	-	-	$11.25 \times 6.25 \times 2.82$	LGA	LTM8021
	4.5	36	-1.2	-18	Up to 600mA	-	-	$11.25 \times 6.25 \times 3.42$	BGA	LTM8029
	3.6	36	-0.8	-10	Up to 1A	0.25 to 2	-	$11.25 \times 9 \times 2.82$	LGA	LTM8022
	3.6	36	-0.8	-10	Up to 2A	0.25 to 2	-	$\begin{aligned} & 11.25 \times 9 \times 2.82 \\ & 11.25 \times 9 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8023
	3.6	36	-0.8	-24	Up to 3A	0.25 to 2	-	$\begin{gathered} 9 \times 15 \times 4.32 \\ 9 \times 11.25 \times 4.92 \end{gathered}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8025
	4.5	60	-2.5	-24	up to 4A	0.1 to 0.5	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \\ & \hline \end{aligned}$	LTM8027
	6	36	-1.2	-24	Up to 5A	0.1 to 1	-	$11.25 \times 15 \times 2.82$	LGA	LTM8026

Note: The parts above represent the simplest μ Module power product solutions for inverting regulators. While all μ Module step-down regulators can be reconfigured as inverters on the PCB, they are subject to three extra design steps described in Design Note DN1021.

						\Downarrow SORT						
		Input	ge (V)	Output	Itage (V)							
	Channels	Min	Max	Min	Max	Current (A)	(MHz)	Outputs (Total I ${ }_{\text {out }}$)	Current Limit	Dimensions (mm)	Package	Part Number
	1	4	36	1.2	5	0.2	-	-	-	$6.25 \times 6.25 \times 2.32$	LGA	LTM8020
	1	3	36	0.8	5	0.5	-	-	-	$6.25 \times 11.25 \times 2.82$	LGA	LTM8021
Step-Down	1	4.5	36	1.2	18	0.6	-	-	-	$6.25 \times 11.25 \times 3.42$	BGA	LTM8029
	1	3.6	36	0.8	10	1	0.25 to 2.0	$\times 2$ (1A)	-	$9 \times 11.25 \times 2.82$	LGA	LTM8022
	1	3.6	36	0.8	10	1	0.25 to 2.0	$\times 2$ (1A)	-	$9 \times 15 \times 2.82$	LGA	LTM8031
	5	6	36	0	24	Five 1	0.2 to 1.0	$\times 10$ (10A)	\checkmark	$15 \times 15 \times 3.42$	BGA	LTM8001
	1	3.6	36	0.8	10	2	0.25 to 2.0	$\times 2$ (4A)	-	$\begin{aligned} & 9 \times 11.25 \times 2.82 \\ & 9 \times 11.25 \times 3.42 \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8023
	1	3.6	36	0.8	10	2	0.25 to 2.0	$\times 2$ (4A)	-	$\begin{aligned} & 9 \times 15 \times 2.82 \\ & 9 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8032
	1	3.6	58	0.8	24	2	0.25 to 2.0	$\times 2$ (4A)	-	$9 \times 15 \times 4.92$	BGA	LTM8050
	2	$3.6{ }^{*}$	20	0.6	5.5	Dual 2.5	0.56 to 4	$\times 8$ (20A)	-	$6.25 \times 6.25 \times 1.82$	LGA	LTM4622
	1	3.6	36	0.8	24	3	0.25 to 2.0	$\times 2$ (6A)	-	$\begin{aligned} & 9 \times 15 \times 4.32 \\ & 9 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8025
	1	3.6	36	0.8	24	3	0.25 to 2.0	$\times 2$ (6A)	-	$\begin{aligned} & 11.25 \times 15 \times 4.32 \\ & 11.25 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8033
	1	4*	20	0.6	5.5	3	0.56 to 4	$\times 12$ (36A)	-	$6.25 \times 6.25 \times 1.82$	LGA	LTM4623
	1	2.375	5.5	0.8	5	4	-	$\times 2$ (8A)	-	$\begin{aligned} & 9 \times 15 \times 2.32 \\ & 9 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4604A
	2	2.375	5.5	0.8	5	Dual 4	-	$\times 2$ (8A)	-	$15 \times 15 \times 2.82$	LGA	LTM4614
	3	2.375	5.5	0.8	5	4, 4, 1.5	-	$\times 2$ (8A)	-	$15 \times 15 \times 2.82$	LGA	LTM4615
	1	4*	14	0.6	5.5	4	-	-	-	$6.25 \times 6.25 \times 5.01$	BGA	LTM4624
	2	4.5	26.5	0.8	5	Dual 4	0.25 to 0.78	$\times 2$ (8A)	-	$15 \times 15 \times 2.82$	LGA	LTM4619
	1	4.5	60	2.5	24	4	0.1 to 0.5	-	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8027
	4	4*	14	0.6	5.5	Quad 4	0.7 to 1.3	$\times 4$ (16A)	-	$9 \times 15 \times 5.01$	BGA	LTM4644
	1	6	36	0.8	1.8	5	0.2 to 1.0	$\times 2$ (10A)	\checkmark	$15 \times 15 \times 4.92$	BGA	LTM8028
	1	6	36	1.2	24	5	0.1 to 1.0	$\times 2$ (10A)	\checkmark	$11.25 \times 15 \times 2.82$	LGA	LTM8026
	1	5	36	3.3	15	5	0.2 to 1.3	$\times 2$ (10A)	-	$15 \times 15 \times 2.82$	LGA	LTM4612
	1	4*	20	0.6	5.5	5	0.56 to 4	$\times 12$ (60A)	-	$6.25 \times 6.25 \times 5.01$	BGA	LTM4625
	1	6	36	1.2	24	± 5	0.1 to 1.0	-	\checkmark	$11.25 \times 15 \times 2.82$	LGA	LTM8052
	1	6	36	1.2	24	± 5	0.1 to 1.0	-	\checkmark	$11.25 \times 15 \times 2.82$	LGA	LTM8052A
	3	4.75	28	0.8	5.5, 13.5	5, 5, 4	0.25 to 0.75	$\times 2$ (10A)	-	$15 \times 15 \times 5.01$	BGA	LTM4634
	1	4.5	20	0.6	5	6	-	-	-	$15 \times 15 \times 2.82$	LGA	LTM4602
	1	4.5	20	0.6	5	6	0.7 to 1.3	$\times 4$ (24A)	-	$15 \times 15 \times 2.82$	LGA	LTM4603
	1	4.5	26.5	0.8	5	6	0.4 to 0.78	$\times 2$ (12A)	-	$9 \times 15 \times 4.32$	LGA	LTM4618
	1	4.5	28	0.6	5	6	-	-	-	$15 \times 15 \times 2.82$	LGA	LTM4602HV
	1	4.5	28	0.6	5	6	0.7 to 1.3	$\times 4$ (24A)	-	$15 \times 15 \times 2.82$	LGA	LTM4603HV
	1	4.5	28	0.6	5	6	0.63 to 1.0	$\times 2$ (12A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4606
	1	2.7	5.5	0.6	5	8	0.75 to 2.25	$\times 4$ (32A)	-	$9 \times 15 \times 2.82$	LGA	LTM4608A
	2	2.7	5.5	0.6	5	Dual 8	0.75 to 2.25	$\times 4$ (32A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4616
	2	4.5	26.5	0.6	5.5	Dual 8	0.4 to 0.78	$\times 4$ (32A)	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4628
	1	5	36	3.3	15	8	0.2 to 1.3	$\times 2$ (16A)	-	$15 \times 15 \times 4.32$	LGA	LTM4613
8	2	4.5	17	0.5	5.5	Dual 9	0.25 to 1	$\times 8$ (72A)	\checkmark	$16 \times 11.9 \times 3.51$	BGA	LTM4675

	\downarrow SORT											
	Output Channels	Input Voltage (V)		Output Voltage (V)		Output Current (A)	Sync Range (MHz)	Parallelable Outputs (Total I ${ }_{\text {OUT }}$)	Adjustable Current Limit	Package Dimensions (mm)	Package	Part Number
		Min	Max	Min	Max							
	1	4.5	16	0.6	3.3	10	0.3 to 0.8	$\times 3$ (30A)	-	$9 \times 15 \times 4.92$	BGA	LTM4649
	1	4.5	20	0.6	5	10	-	-	-	$15 \times 15 \times 2.82$	LGA	LTM4600
Step-Down (Continued)	1	4.5	28	0.6	5	10	-	-	-	$15 \times 15 \times 2.82$	LGA	LTM4600HV
	1	4.5	36	0.8	34	10	0.2 to 0.4	$\times 4$ (40A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4609
	1	4.5	36	0.8	24	10	0.2 to 0.4	$\times 4$ (40A)	-	$15 \times 15 \times 2.82$	LGA	LTM4607
	1	4	38	0.6	6	10	0.175 to 0.66	$\times 4$ (40A)	-	$15 \times 15 \times 5.01$	BGA	LTM4641
	3	4.7 *	16	0.8	1.8, 5.5	Triple 10	0.6 to 0.75	$\times 2$ (20A)	-	$15 \times 15 \times 5.01$	BGA	LTM4633
	1	4.5	20	0.8	16	12	0.2 to 0.4	$\times 4$ (48A)	-	$15 \times 15 \times 2.82$	LGA	LTM4605
	1	4.5	20	0.6	5	12	0.6 to 1.1	$\times 4$ (48A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601 ${ }^{\dagger}$
	1	4.5	20	0.6	5	12	0.6 to 1.1	$\times 4$ (48A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601-1 ${ }^{\dagger}$
	1	4.5	20	0.6	5	12	0.6 to 1.1	$\times 4$ (48A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601A ${ }^{\text {ṫ }}$
	1	4.5	20	0.6	5	12	0.6 to 1.1	$\times 4$ (48A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601A-1执
	1	4.5	28	0.6	5	12	0.6 to 1.1	$\times 4$ (48A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601AHV \ddagger
	1	4.5	28	0.6	5	12	0.6 to 1.1	$\times 4$ (48A)	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \\ & \hline \end{aligned}$	$\mathrm{LTM}^{\text {4 }} 601 \mathrm{HV}^{\dagger}$
	2	4.5	16	0.6	2.5	Dual 13	0.4 to 0.78	$\times 8$ (100A)	-	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4620
	2	4.5	16	0.6	5.3	Dual 13	0.4 to 0.78	$\times 8$ (100A)	-	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4620A
	2	4.5	26.5	0.5	5.4	Dual 13	0.25 to 1.0	$\times 8$ (100A)	\checkmark	$16 \times 16 \times 5.01$	BGA	LTM4676
	2	4.5	17	0.5	5.5	Dual 13	0.25 to 1.0	$\times 8$ (100A)	$\sqrt{ }$	$16 \times 16 \times 5.01$	BGA	LTM4676A
	1	1.5	5.5	0.8	5	15	0.36 to 0.71	$\times 4$ (60A)	-	$15 \times 15 \times 4.32$	LGA	LTM4611
	1	4.5	20	0.6	5	15	0.4 to 0.8	$\times 4$ (60A)	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4627
	2	4.5	15	0.6	1.8	Dual 18	0.4 to 0.78	$\times 8$ (144A)	-	$\begin{aligned} & 16 \times 16 \times 4.41 \\ & 16 \times 16 \times 5.01 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4630
	2	4.5	15	0.6	1.8	Dual 18	0.4 to 0.78	$\times 8$ (144A)	-	$16 \times 16 \times 5.01$	BGA	LTM4630-1
	2	4.5	15	0.6	5.3	Dual 18	0.4 to 0.78	$\times 8$ (144A)	-	$16 \times 16 \times 4.41$	LGA	LTM4630A
	2	4.5	16	0.5	1.8	Dual 18	0.25 to 1	$\times 8$ (144A)	$\sqrt{ }$	$16 \times 16 \times 5.01$	BGA	LTM4677
	1	4.5	20	0.6	5.5	20	0.25 to 0.8	$\times 4$ (80A)	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4637
	1	2.375	7	0.6	5.5	20	0.25 to 0.8	$\times 4$ (80A)	-	$15 \times 15 \times 4.92$	BGA	LTM4639

*Can be reduced with external bias supply
† LTM4601, LTM4601A, LTM4601HV and LTM4601AHV offer precision remote sense. Devices ending with -1 do not.
\ddagger LTM4601A, LTM4601A-1 and LTM4601AHV have redundant pads for enhanced solder joint strength to the PCB.

	\Downarrow SORT											
	Function	Output Channels	Input Voltage (V)		Output Voltage (V)		Output Capability (per Channel)	Sync Range (MHz)	Parallelable Outputs (Total I ${ }_{\text {out }}$)	Package Dimensions (mm)	Package	Part Number
			Min	Max	Min	Max						
	Step-Down	2	3.6*	20	0.5	5.5	Dual 2.5A	0.56 to 4	$\times 8$ (20A)	$6.25 \times 6.25 \times 1.82$	LGA	LTM4622
		2	2.375	5.5	0.8	5	Dual 4A	-	$\times 2$ (8A)	$15 \times 15 \times 2.82$	LGA	LTM4614
Multiple Output		2	4.5	26.5	0.8	5	Dual 4A	0.25 to 0.78	$\times 2$ (8A)	$15 \times 15 \times 2.82$	LGA	LTM4619
		2	2.7	5.5	0.6	5	Dual 8A	0.75 to 2.25	$\times 4$ (32A)	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4616
		2	4.5	26.5	0.6	5.5	Dual 8A	0.4 to 0.78	$\times 4$ (32A)	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4628
		2	4.5	17	0.5	5	Dual 9A	0.25 to 1.0	$\times 8$ (72A)	$16 \times 11.9 \times 3.51$	BGA	LTM4675
		2	4.5	16	0.6	2.5	Dual 13A	0.4 to 0.78	$\times 8$ (100A)	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \\ & \hline \end{aligned}$	LTM4620
		2	4.5	16	0.6	5.3	Dual 13A	0.4 to 0.78	$\times 8$ (100A)	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4620A
		2	4.5	26.5	0.5	5.4	Dual 13A	0.25 to 1.0	$\times 8$ (100A)	$16 \times 16 \times 5.01$	BGA	LTM4676
		2	4.5	17	0.5	5.5	Dual 13A	0.25 to 1.0	$\times 8$ (100A)	$16 \times 16 \times 5.01$	BGA	LTM4676A
		2	4.5	15	0.6	1.8	Dual 18A	0.4 to 0.78	$\times 8$ (144A)	$\begin{aligned} & 16 \times 16 \times 4.41 \\ & 16 \times 16 \times 5.01 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4630
		2	4.5	15	0.6	1.8	Dual 18A	0.4 to 0.78	$\times 8$ (144A)	$16 \times 16 \times 5.01$	BGA	LTM4630-1
		2	4.5	15	0.6	5.3	Dual 18A	0.4 to 0.78	$\times 8$ (144A)	$16 \times 16 \times 4.41$	LGA	LTM4630A
		2	4.5	16	0.5	1.8	Dual 18A	0.25 to 1.0	$\times 8$ (100A)	$16 \times 16 \times 5.01$	BGA	LTM4677
	Isolated Flyback	2	3.1	32	1.2	12	1.5W Combined	-	-	$9 \times 11.25 \times 4.92$	BGA	LTM8048
		2	3.1	31	1.2	12	1.5W Combined	-	-	$9 \times 11.25 \times 4.92$	BGA	LTM8058
	Step-Down	3	2.375	5.5	0.8	5	Triple 4A, 4A, 1.5A	-	$\times 2$ (8A)	$15 \times 15 \times 2.82$	LGA	LTM4615
		3	4.75	28	0.8	5.5, 13.5	Triple 5A, 5A, 4A	0.25 to 0.75	$\times 2$ (10A)	$15 \times 15 \times 5.01$	BGA	LTM4634
		3	4.7*	16	0.8	1.8, 5.5	Triple 10A	0.6 to 0.75	$\times 2$ (20A)	$15 \times 15 \times 5.01$	BGA	LTM4633
		4	4*	14	0.6	5.5	Quad 4A	0.7 to 1.3	$\times 4$ (16A)	$9 \times 15 \times 5.01$	BGA	LTM4644
		5	6	36	0	24	Five 1A	0.2 to 1.0	$\times 10$ (10A)	$15 \times 15 \times 3.42$	BGA	LTM8001

*Can be reduced with external bias supply.

LTM4644's Outputs Are Configurable from Four 4A Outputs to a Single 16A

Input Voltage (V)		Output Voltage (V)		LED Drive Current (A)	Dimming	Clock Sync Range (MHz)	Open LED Protection	LGA Package Dimensions (mm)	Part Number
Min	Max	Min	Max						
3	30	2	32	1	Analog and PWM	0.3 to 2.5	Yes	$9 \times 15 \times 2.82$	LTM8042
3	30	2	32	0.35	Analog and PWM	0.3 to 2.5	Yes	$9 \times 15 \times 2.82$	LTM8042-1
4	36	2.5	13	1	Analog and PWM	-	Yes	$9 \times 15 \times 4.32$	LTM8040

Function	Input Voltage (V)		Output Voltage (V)		Output Current (A)
	Min	Max	Min	Max	
Step-Down	4	36	1.2	5	0.2
	3	36	0.8	5	0.5
	3.6	36	0.8	10	1
	3.6	36	0.8	10	2
	3.6	36	0.8	24	3
	4*	20	0.6	5.5	3
	4*	14	0.6	5.5	4
	5	36	3.3	15	5
	4.5	28	0.6	5	6
	5	36	3.3	15	8

EN55022B
Certiffed

Certificates and
PCB Gerber
Files Available
at www.linear.
com/ClassB

Sync Range $(M H z)$	Package Dimensions (mm)	Package	Part Number
-	$6.25 \times 6.25 \times 2.32$	LGA	LTM8020
-	$6.25 \times 11.25 \times 2.82$	LGA	LTM8021
0.25 to 2.0	$9 \times 15 \times 2.82$	LGA	LTM8031
0.25 to 2.0	$9 \times 15 \times 2.82$ $9 \times 15 \times 3.42$	LGA	LTM8032
0.25 to 2.0	$11.25 \times 15 \times 4.32$ $11.25 \times 15 \times 4.92$	LGA	BGA
0.56 to 4	$6.25 \times 6.25 \times 1.82$	LGA	LTM8033
-	$6.25 \times 6.25 \times 5.01$	BGA	LTM4623
0.18 to 1.3	$15 \times 15 \times 2.82$	LGA	LTM4612
0.7 to 1.1	$15 \times 15 \times 2.82$	LGA	LTM4606
0.18 to 1.3	$15 \times 15 \times 3.42$	BGA	

*Can be reduced with external bias supply.
\Downarrow SORT

Isolation Voltage	Output Channels	Input Voltage (V)		Output Voltage (V)		Output Ripple
		Min	Max	Min	Max	
725VDC	1	3.1	32	2.5	12	$35 \mathrm{mV} \mathrm{V}_{\text {P. }}$
	2	3.1	32	1.2	12	1 mV p.p
$\begin{aligned} & \text { 2kVDC } \\ & (3 \mathrm{kVDC}) \end{aligned}$	1	3.1	31	2.5	12	$10 \mathrm{mV} \mathrm{P}_{\text {P. }}$
	2	3.1	31	1.2	12	$1 \mathrm{mV} \mathrm{p}_{\text {Pp }}$
	1	3.1	31	1.8	12	$50 \mathrm{mV} \mathrm{P}_{\text {P. }}$

Input Voltage (V)		Output Voltage (V)		Maximum Charge Current (A)	Supported Battery Chemistries	Adjustable Current Limit	MPPT*	Auto Recharge	Parallelable Output	Clock Sync Range (MHz)	LGA Package Dimensions (mm)	Part Number
Min	Max	Min	Max									
4.95	32	4.1	8.4	2	Li-Ion, Li-Polymer	\checkmark	-	\checkmark	-	-	$9 \times 15 \times 4.32$	LTM8061
4.95	32	3.3	14.4	2	Li-Ion, Li-Polymer, SLA, LiFePO4	-	\checkmark	\checkmark	$\times 3$ (6A)	-	$9 \times 15 \times 4.32$	LTM8062
4.95	32	3.3	18.8	2	Li-Ion, Li-Polymer, SLA, LiFePO4	-	\checkmark	$\sqrt{ }$	$\times 3$ (6A)	-	$9 \times 15 \times 4.32$	LTM8062A

*Maximum peak power tracking for use in solar powered applications.
\downarrow SORT

Input Voltage (V)		Output Voltage (V)		Output Current (A)	Clock Sync Range (MHz)	Extended Temp Range	Parallelable Output (Total $\mathrm{I}_{\mathrm{ouT}}$)	Inductor	Package Dimensions (mm)	Package	Part Number
Min	Max	Min	Max								
2.8	18	± 2.5	± 15	Up to 0.7†	0.2 to 2.0	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-	Internal	$6.25 \times 11.25 \times 4.92$	BGA	LTM8045
5	36	1.2	36	$5.4 \dagger$	0.2 to 0.7	-55 to $125^{\circ} \mathrm{C}$	$\times 2$ (10.8)	Internal	$11.25 \times 15 \times 3.42$	BGA	LTM8054
5	58	1.2	48	$5.4 \dagger$	0.2 to 0.7	-55 to $125^{\circ} \mathrm{C}$	$\times 2$ (10.8A)	Internal	$15 \times 15 \times 4.92$	BGA	LTM8056
5	36	1.2	36	$8.5 \dagger$	0.2 to 0.7	-55 to $125^{\circ} \mathrm{C}$	$\times 2$ (17A)	Internal	$15 \times 15 \times 4.92$	BGA	LTM8055
4.5	36	0.8	24	10†	0.2 to 0.4	-	$\times 4(20 A) \dagger \dagger$	External	$15 \times 15 \times 2.82$	LGA	LTM4607
5	36	0.8	34	10†	0.2 to 0.4	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\times 4$ (16A) $\dagger \dagger$	External	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4609
4.5	20	0.8	16	12†	0.2 to 0.4	-	$\times 4(20 \mathrm{~A}) \dagger \dagger$	External	$15 \times 15 \times 2.82$	LGA	LTM4605

\dagger Output current varies depending on operation mode.
\dagger †Step-up mode

	Function	Output Channels	Input Voltage (V)		Output Voltage (V)		$\begin{aligned} & \text { Output } \\ & \text { Capability } \\ & \text { (per Channel) } \end{aligned}$	Sync Range (MHz)	EN55022B Certified	Package Dimensions (mm)	Package	Part Number
			Min	Max	Min	Max						
	725V Isolated Flyback	1	3.1	32	2.5	12	1.5W	-	-	$9 \times 11.25 \times 4.92$	BGA	LTM8047MP
		2	3.1	32	1.2	12	1.5W Combined	-	-	$9 \times 11.25 \times 4.92$	BGA	LTM8048MP
	2kVAC (3kVDC) Isolated Flyback	1	3.1	31	2.5	12	1.5W	-	-	$9 \times 11.25 \times 4.92$	BGA	LTM8057MP
		2	3.1	31	1.2	12	1.5W Combined	-	-	$9 \times 11.25 \times 4.92$	BGA	LTM8058MP
		1	3.1	31	1.8	12	2.5W	-	-	$9 \times 15 \times 4.92$	BGA	LTM8046MP
	Step-Up \&Down	1	2.8	18	± 2.5	± 15	Up to 0.7A	0.2 to 2.0	-	$6.25 \times 11.25 \times 4.92$	BGA	LTM8045MP
		1	5	36	1.2	36	5.4A	0.2 to 0.7	-	$11.25 \times 15 \times 3.42$	BGA	LTM8054MP
		1	5	58	1.2	48	5.4A	0.2 to 0.7	-	$15 \times 15 \times 4.92$	BGA	LTM8056MP
		1	5	36	1.2	36	8.5A	0.2 to 0.7	-	$15 \times 15 \times 4.92$	BGA	LTM8055MP
		1	4.5	36	0.8	34	4A \dagger	0.2 to 0.4	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4609MP
		1	4	36	1.2	5	0.2 A	-	$\sqrt{ }$	$6.25 \times 6.25 \times 2.32$	LGA	LTM8020MP
			4.5	36	1.2	18	0.6A	-	-	$6.25 \times 11.25 \times 3.42$	BGA	LTM8029MP
			3.6	36	0.8	10	1A	0.25 to 2.0	-	$9 \times 11.25 \times 2.82$	LGA	LTM8022MP
0			3.6	36	0.8	10	1A	0.25 to 2.0	\checkmark	$9 \times 15 \times 2.82$	LGA	LTM8031MP
$\begin{aligned} & \text { +1 } \\ & \hline 9 \end{aligned}$			3.6	36	0.8	10	2 A	0.25 to 2.0	-	$\begin{aligned} & 9 \times 11.25 \times 2.82 \\ & 9 \times 11.25 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8023MP
$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$			3.6	36	0.8	10	2 A	0.25 to 2.0	$\sqrt{ }$	$\begin{aligned} & 9 \times 15 \times 2.82 \\ & 9 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8032MP
1			3.6	58	0.8	24	2 A	0.25 to 2.0	-	$9 \times 15 \times 4.92$	BGA	LTM8050MP
$\frac{0}{2}$			3.6	36	0.8	24	3 A	0.25 to 2.0	-	$\begin{aligned} & 9 \times 15 \times 4.32 \\ & 9 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8025MP
$\stackrel{\circ}{\mathrm{o}}$			3.6	36	0.8	24	3 A	0.25 to 2.0	$\sqrt{ }$	$\begin{aligned} & 11.25 \times 15 \times 4.32 \\ & 11.25 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8033MP
을			4.5	60	2.5	24	4A	0.12 to 0.5	-	$\begin{gathered} 15 \times 15 \times 4.32 \\ 11.25 \times 15 \times 4.92 \end{gathered}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8027MP
\%			6	36	1.2	24	5A	0.1 to 1.0	-	$11.25 \times 15 \times 2.82$	LGA	LTM8026MP
			6	36	0.8	1.8	5A	0.2 to 1.0	-	$15 \times 15 \times 4.92$	BGA	LTM8028MP
			5	36	3.3	15	5A	0.2 to 1.3	$\sqrt{ }$	$15 \times 15 \times 2.82$	LGA	LTM4612MP
			6	36	1.2	24	$\pm 5 \mathrm{~A}$	0.1 to 1.0	-	$11.25 \times 15 \times 2.82$	LGA	LTM8052MP
			6	36	1.2	24	$\pm 5 \mathrm{~A}$	0.1 to 1.0	-	$11.25 \times 15 \times 2.82$	LGA	LTM8052AMP
			4.5	28	0.6	5	6 A	0.63 to 1.0	\checkmark	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4606MP
			2.7	5.5	0.6	5	8A	0.75 to 2.25	-	$9 \times 15 \times 2.82$	LGA	LTM4608AMP
			5	36	3.3	15	8A	0.2 to 1.3	$\sqrt{ }$	$15 \times 15 \times 4.32$	LGA	LTM4613MP
			4.5	28	0.6	5	10A	-	-	$15 \times 15 \times 2.82$	LGA	LTM4600HVMP
			4	38	0.6	6	10A	0.175 to 0.66	-	$15 \times 15 \times 5.01$	BGA	LTM4641MP
			4.5	28	0.6	5	12A	0.6 to 1.1	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \\ & \hline \end{aligned}$	LTM4601AHVMP
			4.5	20	0.6	5	15A	0.4 to 0.8	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4627MP
		2	2.7	5.5	0.6	5	8A	0.75 to 2.25	-	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4616MP
		3	4.7*	16	0.8	1.8, 5.5	10A	0.6 to 0.75	-	$15 \times 15 \times 5.01$	BGA	LTM4633MP
		6	6	36	0	24	1A	0.2 to 1.0	-	$15 \times 15 \times 3.42$	BGA	LTM8001MP

Function	Output Channels	Input Voltage (V)		Output Voltage (V)		Output Current per Channel (A)	$\mathrm{V}_{\text {out }}$ Accuracy	Sync Range (MHz)	Package Dimensions (mm)	Package	Part Number
		Min	Max	Min	Max ${ }^{1}$						
Step-Down	1	4.5	20	0.6	3.3	6	$\pm 1.5 \%$	0.7 to 1.3	$15 \times 15 \times 2.82$	LGA	LTM4603
	1	4.5	28	0.6	3.3	6	$\pm 1.5 \%$	0.7 to 1.3	$15 \times 15 \times 2.82$	LGA	LTM4603HV
	2	4.5	26.5	0.6	3.3	8	$\pm 1.5 \%$	0.4 to 0.78	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \\ & \hline \end{aligned}$	LGA BGA	LTM4628
	2	4.5	17	0.5	5.5	9	$\pm 0.5 \%$	0.25 to 1.0	$16 \times 11.9 \times 3.51$	BGA	LTM4675
	1	4.5	16	0.6	3.3	10	$\pm 1.5 \%$	0.3 to 0.8	$9 \times 15 \times 4.92$	BGA	LTM4649
	1	4.5	38	0.6	6	10	$\pm 1.5 \%$	-	$15 \times 15 \times 5.01$	BGA	LTM4641
	1	4.5	20	0.6	3.3	12	$\pm 1.5 \%$	0.6 to 1.1	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \mathrm{LGA} \\ & \mathrm{BGA} \end{aligned}$	LTM4601
	1	4.5	20	0.6	3.3	12	$\pm 1.5 \%$	0.6 to 1.1	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601A \ddagger
	1	4.5	28	0.6	3.3	12	$\pm 1.5 \%$	0.6 to 1.1	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601AHV \ddagger
	1	4.5	28	0.6	3.3	12	$\pm 1.5 \%$	0.6 to 1.1	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601HV
	2	4.5	16	0.6	2.5	Dual 13	$\pm 1.5 \%$	0.4 to 0.78	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \end{aligned}$	LGA BGA	LTM4620
	2	4.5	16	0.6	3.3	Dual 13	$\pm 1.5 \%$	0.4 to 0.78	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4620A
	2	4.5	26.5	0.5	5.4	Dual 13	$\pm 1.0 \%$	0.25 to 1.0	$16 \times 16 \times 5.01$	BGA	LTM4676
	2	4.5	16	0.5	5.5	Dual 13	$\pm 0.5 \%$	0.25 to 1.0	$16 \times 16 \times 5.01$	BGA	LTM4676A
	1	1.5	5.5	0.8	3.7	15	$\pm 2.0 \%$	0.36 to 0.71	$15 \times 15 \times 4.32$	LGA	LTM4611
	1	4.5	20	0.6	3.3	15	$\pm 1.5 \%$	0.4 to 0.8	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4627
	2	4.5	15	0.6	1.8	Dual 18	$\pm 1.5 \%$	0.4 to 0.78	$\begin{aligned} & 16 \times 16 \times 4.41 \\ & 16 \times 16 \times 5.01 \end{aligned}$	LGA BGA	LTM4630
	2	4.5	15	0.6	5.3	Dual 18	$\pm 1.5 \%$	0.4 to 0.78	$16 \times 16 \times 4.41$	LGA	LTM4630A
	2	4.5	15	0.6	1.8	Dual 18	$\pm 0.8 \%$	0.4 to 0.78	$16 \times 16 \times 5.01$	BGA	LTM4630-1A
	2	4.5	15	0.6	1.8	Dual 18	$\pm 1.5 \%$	0.4 to 0.78	$16 \times 16 \times 4.41$	LGA	LTM4630-1B
	2	4.5	16	0.5	1.8	Dual 18	$\pm 0.5 \%$	0.25 to 1	$16 \times 16 \times 5.01$	BGA	LTM4677
	1	4.5	20	0.6	3.3	20	$\pm 1.5 \%$	0.25 to 0.8	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{LGA} \\ & \mathrm{BGA} \end{aligned}$	LTM4637
	1	2.375	7	0.6	5.5	20	$\pm 1.5 \%$	0.25 to 0.8	$15 \times 15 \times 4.92$	BGA	LTM4639

${ }^{1}$ When internal remote sense amplifier is in use. See the Step-Down table on page 8 for maximum output voltage when the remote sense amplifier is not in use.
\ddagger LTM4601A and LTM4601AHV have redundant pads for enhanced solder joint strength to the PCB.

PCB Voltage Drop Compensation for Voltage Regulation at the Load

If PCB design limitations require the $\mathrm{DC} / \mathrm{DC}$ converter to be placed away from a high current load, the μ Module regulators listed above offer an onboard differential sense amplifier to correct for PCB IR drop voltage losses between $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {LOAD }}$ as well as the ground return path. As a result, these devices guarantee voltage accuracy of $\pm 2.0 \%$ or better at the point of load, over line, load and temperature.

Demonstration Circuits

All powermanagement μ Module regulators are available with demonstration circuits and user manuals. Demonstration circuits can be ordered through the Linear Technology website or by contacting your Linear Technology sales representative. Design files are available at www.linear.com/demo.

Sorted by μ Module Part Numbers
$\stackrel{1 "}{ }$
${ }^{1 \mathrm{~cm}}$

LTM4607 (DC1198A-B)

LTM4608A (DC1400A)

LTM4609 (DC1477B)

SORT

Output Sequencing

Voltage Margining

Function	Input Voltage (V)		Output Voltage (V)		Output Current per Channel (A)	Vout MarginUp/Down	Output Sequencing	Package Dimensions (mm)	Package	Part Number
	Min	Max	Min	Max						
	4*	20	0.6	5.5	3	-	\checkmark	$6.25 \times 6.25 \times 1.82$	LGA	LTM4623
Step-Down	2.375	5.5	0.8	5	4	-	\checkmark	$\begin{aligned} & 9 \times 15 \times 2.32 \\ & 9 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4604A
	4*	14	0.6	5.5	4	-	$\sqrt{ }$	$6.25 \times 6.25 \times 5.01$	BGA	LTM4624
	5	36	3.3	15	5	Adjustable	\checkmark	$15 \times 15 \times 2.82$	LGA	LTM4612
	6	36	0.8	1.8	5	Adjustable	-	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM8028
	4*	20	0.6	5.5	5	-	\checkmark	$6.25 \times 6.25 \times 5.01$	BGA	LTM4625
	4.5	20	0.6	5	6	Adjustable	\checkmark	$15 \times 15 \times 2.82$	LGA	LTM4603
	4.5	26.5	0.8	5	6	-	$\sqrt{ }$	$9 \times 15 \times 4.32$	LGA	LTM4618
	4.5	28	0.6	5	6	Adjustable	\checkmark	$15 \times 15 \times 2.82$	LGA	LTM4603HV
	4.5	28	0.6	5	6	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4606
	2.7	5.5	0.6	5	8	5\%, 10\%, 15\%	$\sqrt{ }$	$9 \times 15 \times 2.82$	LGA	LTM4608A
	5	36	3.3	15	8	Adjustable	$\sqrt{ }$	$15 \times 15 \times 4.32$	LGA	LTM4613
	4.5	16	0.6	3.3	10	-	\checkmark	$9 \times 15 \times 4.92$	BGA	LTM4649
	4	38	0.6	6	10	-	\checkmark	$15 \times 15 \times 5.01$	BGA	LTM4641
	4.5	28	0.6	5	12	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601†
	4.5	20	0.6	5	12	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601-1 \dagger
	4.5	20	0.6	5	12	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601A† \ddagger
	4.5	20	0.6	5	12	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601A-1† \ddagger
	4.5	20	0.6	5	12	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601AHV $\ddagger \ddagger$
	4.5	28	0.6	5	12	Adjustable	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4601HV \dagger
	1.5	5.5	0.8	5	15	-	\checkmark	$15 \times 15 \times 4.32$	LGA	LTM4611
	4.5	20	0.6	5	15	-	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4627
	4.5	20	0.6	5.5	20	-	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4637
	2.375	7	0.6	5.5	20	-	\checkmark	$15 \times 15 \times 4.92$	BGA	LTM4639
Multiple Output Step-Down	3.6	20	0.6	5.5	Dual 2	-	$\sqrt{ }$	$6.25 \times 6.25 \times 1.82$	LGA	LTM4622
	2.375	5.5	0.8	5	Dual 4	-	\checkmark	$15 \times 15 \times 2.82$	LGA	LTM4614
	2.375	5.5	0.8	5	Triple 4, 4, 1.5	-	\checkmark	$15 \times 15 \times 2.82$	LGA	LTM4615
	4.5	26.5	0.8	5	Dual 4	-	\checkmark	$15 \times 15 \times 2.82$	LGA	LTM4619
	4*	14	0.6	5.5	Quad 4	-	$\sqrt{ }$	$9 \times 15 \times 5.01$	BGA	LTM4644
	2.7	5.5	0.6	5	Dual 8	5\%, 10\%, 15\%	\checkmark	$\begin{aligned} & 15 \times 15 \times 2.82 \\ & 15 \times 15 \times 3.42 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4616
	4.5	26.5	0.6	5.5	Dual 8	-	$\sqrt{ }$	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4628
	4.5	17	0.5	5.5	Dual 9	Adjustable	$\sqrt{ }$	$16 \times 11.9 \times 3.51$	BGA	LTM4675
	4.7*	16	0.8	1.8, 5.5	Triple 10	-	\checkmark	$15 \times 15 \times 5.01$	BGA	LTM4633

*Can be reduced with external bias supply
\dagger LTM4601, LTM4601A, LTM4601HV and LTM4601AHV offer precision remote sense (see page 13). Devices ending with -1 do not
\ddagger TM4601A, LTM4601A-1 and LTM4601AHV have redundant pads for enhanced solder joint strength to the PCB

Function		Input Voltage (V)		Output Voltage (V)		
	Output Channels	Min	Max	Min	Max	
		4.5	15	0.6	1.8	
	2	4.5	15	0.6	1.8	

Tune-a- μ Module Regulator
Access and alter loop response of a μ Module regulator by adjusting compensation to achieve precision $\mathrm{V}_{\text {OUT }}$ at DC and transient based on the behavior of load as well as output capacitor type and quantity.

LTM4630-1, 1.0V at $36 \mathrm{~A} \pm 3 \%$ Transient Response

25% Load Step Transient Response with $\pm 3 \%$ Output Regulation Window $12 \mathrm{~V}_{\mathbb{I N}}, 1.2 \mathrm{~V}_{\text {out }}, 36 \mathrm{~A}$ with $5 \times 220 \mu \mathrm{~F}$ Ceramic Cap
*SEE DEMO CIRCUIT DC2081A-B
$\|_{\text {SORT }}$

Best 12V to 1V Step-Down

Function	Output Channels	Input Voltage (V)		Output Voltage (V)		Total Output Current (A)	Peak Efficiency 12V to 1V (Load)	Package Dimensions (mm)	Package	Part Number
		Min	Max	Min	Max					
Step-Down	1	4.5	16	0.6	3.3	10	$\begin{gathered} 85 \%(6 A) \\ 85 \% ~(10 A) \\ \hline \end{gathered}$	$9 \times 15 \times 4.92$	BGA	LTM4649
	1	4.5	20	0.5	5	15	$\begin{gathered} 85 \%(8 A) \\ 81 \%(15 A) \\ \hline \end{gathered}$	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4627
	1	4.5	20	0.6	5.5	20	$\begin{aligned} & 87 \%(8 A) \\ & 84 \%(20 A) \end{aligned}$	$\begin{aligned} & 15 \times 15 \times 4.32 \\ & 15 \times 15 \times 4.92 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4637
	2	4.5	16	0.6	2.5	50	$\begin{aligned} & 87 \% \text { (30A) } \\ & \text { 84\% (50A) } \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4620
	2	4.5	15	0.6	1.8	70	$\begin{aligned} & \text { 86\% (30A) } \\ & 84 \% ~(70 A) \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4630
	2	4.5	15	0.6	1.8	105	$\begin{gathered} \hline 86 \%(40 A) \\ 84 \%(105 A) \\ \hline \end{gathered}$	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4630
	2	4.5	15	0.5	1.8	144	$\begin{gathered} \hline 86 \%(60 A) \\ 83 \%(140 A) \end{gathered}$	$\begin{aligned} & 15 \times 15 \times 4.41 \\ & 15 \times 15 \times 5.01 \end{aligned}$	$\begin{aligned} & \text { LGA } \\ & \text { BGA } \end{aligned}$	LTM4630
Step-Down with Power System Management	2	4.5	17	0.5	5.5	18	$\begin{aligned} & \hline 82 \%(12 A) \\ & 81 \%(18 A) \\ & \hline \end{aligned}$	$16 \times 11.9 \times 3.51$	BGA	LTM4675
	2	4.5	17	0.5	5.5	26	$\begin{aligned} & \hline 84 \% \text { (12A) } \\ & 80 \% \text { (26A } \end{aligned}$	$15 \times 15 \times 5.01$	BGA	LTM4676A
	2	4.5	17	0.5	5.5	50	$\begin{aligned} & 84 \%(25 A) \\ & 80 \% ~(50 A) \\ & \hline \end{aligned}$	$15 \times 15 \times 5.01$	BGA	LTM4676A
	2	4.5	17	0.5	5.5	75	$\begin{aligned} & 84 \%(35 A) \\ & 80 \% ~(75 A) \\ & \hline \end{aligned}$	$15 \times 15 \times 5.01$	BGA	LTM4676A
	2	4.5	17	0.5	5.5	100	$\begin{gathered} \hline 84 \%(50 A) \\ 80 \%(100 A) \\ \hline \end{gathered}$	$15 \mathrm{vx} 15 \times 5.01$	BGA	LTM4676A

High Efficiency, $12 \mathrm{~V}_{\mathbb{N}}, 10 \mathrm{~A}<\mathrm{I}_{\text {out }}<140 \mathrm{~A}$

LTM4627
(Single 15A)

LTM4630 4 Parallel 144A Demo Board

LTM4630 Single 36A)
4 Parallel

LOW Noise	Topology	Input Voltage (V)		Output Voltage (V)		Total Output Capability	Clock Sync Range (MHz)	LDO Outputs	Parallelable Outputs (Total $\mathrm{I}_{\mathrm{our}}$)	$\begin{aligned} & \mathrm{V}_{\text {out }} \text { Noise } \\ & \hline \end{aligned}$	BGA Package Dimensions (mm)	Part Number
		Min	Max	Min	Max							
	Sync Buck Plus 5 LDO Post Regulators	6	36	0	24	5A	0.2 to 1.0	$1.1 \mathrm{~A} \times 5$	$\times 10$ (10A)	3.5	$15 \times 15 \times 3.42$	LTM8001
Low Output	Sync Buck Plus LDO Post Regulator	6	36	0.8	1.8	5A	0.2 to 1.0	$5 \mathrm{~A} \times 1$	-	0.75	$15 \times 15 \times 4.92$	LTM8028
	725VDC Isolated Flyback Plus LDO Post Regulator	3.1	32	1.2	12	1.5W	-	1	-	1.0	$9 \times 11.25 \times 4.92$	LTM8048
	2kVAC (3kVDC) Isolated Flyback Plus LDO Post Regulator	3.1	31	1.2	12	1.5W	-	1	-	1.0	$9 \times 11.25 \times 4.92$	LTM8058
	SEPIC or Inverting	2.8	18	± 2.5	± 15	Up to 0.7	0.2 to 2.0	None	-	1.0	$6.25 \times 11.25 \times 4.92$	LTM8045

Function	Output Channels	Input Voltage (V)		Output Voltage (V)		Output Current (A)	Clock Sync Range (MHz)	Parallelable Outputs (Total $\mathrm{I}_{\text {our }}$)	Package Dimensions (mm)	Package	Part Number
		Min	Max	Min	Max						
Step Down	2	3.6 *	20	0.6	5.5	Dual: 2.5	0.56 to 4	$\times 8$ (20A)	$6.25 \times 6.25 \times 1.82$	LGA	LTM4622
	1	4*	20	0.6	5.5	3	0.56 to 4	$\times 12$ (36A)	$6.25 \times 6.25 \times 1.82$	LGA	LTM4623

Ultrathin

Ultrathin μ Module Regulators Fit Under the FPGA Heat Sink

Reliability

| | LTM80xx | | |
| :--- | :---: | :---: | :---: | :---: |

After J－STD－020 Level 3 preconditioning
To download the full reliability reports，visit www．linear．com／umodule
μ Module power products in BGA packages with SAC305 solder balls and LGA packages are halogen－free and RoHS compliant．Select products are also available in BGA packages with SnPb solder balls．Contact your Linear Technology authorized sales representative for details．The materials declaration file for all released products is available at：www．linear．com／umodule

Design and Application Support

Thermal Performance

－AN110 LTM4601 DC／DC μ Module Regulator Thermal Performance
－AN119B Powering Complex FPGA－Based Systems－Thermal Performance

Electrical Performance

－AN119A Powering Complex FPGA－Based Systems－Electrical Performance
－DN385 10A High Performance Point－of－Load DC／DC μ Module Regulator
－DN411 Simple and Compact 4－Output Point－of－Load DC／DC μ Module System
－DN430 8A Low Voltage，Low Profile DC／DC μ Module Regulator
－DN438 μ Module Buck－Boost Regulators
－DN530 Increasing Output Voltage and Current Range
PCB Layout and Assembly
－AN117 DC／DC μ Module Regulator Printed Circuit Board Design Guidelines
CAD Symbols and Footprints
The downloadable zip files below contain the scematic symbol and PCB footprint compatible with Mentor Graphics PADS v9．5 or later，and Cadence ORCAD v16．5 or later．
－LTM46xx Series
－LTM80xx Series

Demonstration Circuits

Demonstration circuits（pages 10－13）along with associated bill of materials（BoM）and Gerber files are available for all products．Current sharing boards are available for select regulators．

Package Mark Codes

The part number，lot number，date code and final assembly location are marked on the top of the package to facilitate product traceability．

The letter＂V＂following the part number indicates an LGA package．
The letter＂Y＂indicates a BGA package．The lot number consists of a single letter followed by three to five numbers．The date code consists of four numbers in a YYWW format and is commonly followed by a two letter code indicating the country of final assembly：MY for Malaysia and KR for South Korea．The＂e4＂or＂e1＂mark indicates a RoHS compliant package．

For example，the LTM8020 in an LGA package shown is from lot\＃J447 and was assembled work week 18 of 2009 in Malaysia．The LTM4676 in a BGA package is from lot\＃N67786 and was assembled work week 16 of 2012 in Malaysia．

LTpowerCAD II Power Supply Design Tool at www.linear.com/LTpowerCAD
LTpowerCADTM is a free and easy-to-use power supply design tool with a user-friendly graphical user interface (GUI) and powerful design features. It helps power supply designers to select a solution for given supply specifications, choose power stage components, estimate regulator efficiency and power loss, and optimize supply loop stability and load transient performance. It is a fast offline tool that runs on Windows PCs, and now includes a sync-release feature to ensure your program and component library are up-to-date. Once a circuit design is completed, it is easily exported to the LTspice - simulation platform.

Power Stage Design

Loop Gain and Load Transient Response Analysis

Efficiency and Power Loss Analysis

Part Search and Selection
LTspice Circuit Simulation Tool
LTspice is a free, simple and powerful circuit simulation tool with a library containing all Linear Technology products, as well as commonly used discrete passive and transistor components,

Altera Arria 10 GX FPGA Development Kit

Input	Outputs	Part Number
12 V	$3.3 \mathrm{~V} / 30 \mathrm{~A}$	LTM4620A $\times 2 \mathrm{pcs}$
	$1.1 \mathrm{~V} / 17 \mathrm{~A}$	LTM4637

Xilinx Virtex -7 10G/40G/100G Optical Interface FPGA Platform

Input	Outputs	Part Number
	$1.0 \mathrm{~V} / 26 \mathrm{~A}$	LTM4620
	$1.2 \mathrm{~V} / 8 \mathrm{~A}, 1.35 \mathrm{~V} / 8 \mathrm{~A}$	LTM4628
	$1.5 \mathrm{~V} / 15 \mathrm{~A}$	LTM4627
	$1.8 \mathrm{~V} / 6 \mathrm{~A}$	LTM4618
	$2.5 \mathrm{~V} / 15 \mathrm{~A}$	LTM4627
	$3.3 \mathrm{~V} / 6 \mathrm{~A}$	LTM4618
	$3.3 \mathrm{~V} / 15 \mathrm{~A}$	LTM4627
	$3.3 \mathrm{~V} / 15 \mathrm{~A}$	LTM4627
	$1.5 \mathrm{~V} / 8 \mathrm{~A}$ or $1.8 \mathrm{~V} / 8 \mathrm{~A}$	LTM4618

Altera Stratix V Dual 40G Half-Size PCI Express Networking Card

Input	Outputs	Part Number
12 V	$0.85 \mathrm{~V} / 26 \mathrm{~A}$	LTM4620
	$1.5 \mathrm{~V} / 13 \mathrm{~A}, 1.8 \mathrm{~V} / 13 \mathrm{~A}$	LTM4620
	$2.5 \mathrm{~V} / 8 \mathrm{~A}, 3.3 \mathrm{~V} / 8 \mathrm{~A}$	LTM4628

Altera Stratix V GX/GS Half-Length PCle Board with Dual QSFP+/SFP+, DDR3 and QDRII+

Input	Outputs	Part Number
12 V	$3.3 \mathrm{~V} / 8 \mathrm{~A}, 2.5 \mathrm{~V} / 8 \mathrm{~A}$	LTM4628
	$1.5 \mathrm{~V} / 8 \mathrm{~A}, 1.8 \mathrm{~V} / 8 \mathrm{~A}$	LTM4628
	$0.85 \mathrm{~V} / 32 \mathrm{~A}$	LTM $4628 \times 2 \mathrm{ccs}$

Simple \& Done

Complete Power System-in-a-Package

Over 100μ Module ${ }^{\circledR}$ Power Solutions

Our quickest, simplest and most integrated $\mathrm{DC} / \mathrm{DC}$ power solutions are complete systems-in-a-package with integrated inductor, MOSFET, DC/DC regulator IC and supporting components. With over 100 power solutions available, each μ Module product is qualified with Linear Technology's stringent electrical, package and thermal reliability tests. Simplify and speed your power system development with μ Module power products. Our μ Module products are available in both BGA and LGA packages.

